Given,
The length of one of the organ pipes, L₁=1.65 m
The frequency of the beat note, f=1.8 Hz
The speed of sound is given by, v=343 m/s
The beat frequency is given by,
![\begin{gathered} f=|f_1-f_2| \\ =|(v)/(4L_1)-(v)/(4L_2)| \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/umpzn19cks3g83cbm3ob0hhgy3sxqs84f8.png)
Where f₁ is the frequency of the 1st pipe, f₂ is the frequency of the second pipe, and L₂ is the length of the second pipe.
On rearranging the above equation,
![\begin{gathered} (4f)/(v)=|(1)/(L_1)-(1)/(L_2)| \\ \Rightarrow(1)/(L_2)=(1)/(L_1)-(4f)/(v) \\ =L_2=(1)/((1)/(L_1)-(4f)/(v)) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/9sz3ahmtweuna3wr3lfgfg6xza730ayjmd.png)
On substituting the known values,
![\begin{gathered} L_2=(1)/((1)/(1.65)-(4*1.8)/(343)) \\ =(1)/(0.61-0.02) \\ =1.7\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/vtomkb2yugqo5eb2tvruq7aaofbvyobe87.png)
The difference in the length of the organ pipes is,
![\begin{gathered} \Delta L=L_2-L_1 \\ =1.7-1.65 \\ =0.05\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/dkt6bgvyfqj6jvz7wcojtickb5xdh6ljni.png)
Therefore the second pipe is longer than the 1st pipe by 0.05 m