ANSWER:
39.2 m/s^2
Explanation:
We have to acceleration due to gravity at the surface of planet:
![\begin{gathered} g_p=\frac{GM_p}{(R_p)^2^{}},M_p=\rho_p\cdot V_p \\ g_p=(G\cdot\rho_p\cdot V_p)/((R_p)^2) \\ g_p=\frac{G\cdot\rho_p\cdot(4)/(3)\pi(R^3_p)_{}}{(R_p)^2} \\ g_p=(4)/(3)\pi\cdot G\cdot\rho_p\cdot R_p \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/jfnkkbuvn7yies986h43a358q1k6xdoon6.png)
Where,
Mp = mass of planet
ρp = density of planet
Rp = radius of planet
Given:
ρp = 2ρe, Rp = 2Re
where,
ρe = density of earth
Re = radius of earth
Replacing:
![\begin{gathered} g_p=(4)/(3)\pi\cdot G\cdot2\rho_e\cdot2R_e \\ g_p=4\cdot\mleft((4)/(3)\pi\cdot\: G\cdot2\rho_e\cdot2R_e\mright) \\ g_p=4\cdot g_e \\ g_e=9.8m/s^2 \\ \text{ replacing} \\ g_p=9.8\cdot4 \\ g_p=39.2m/s^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/azxs5la995dbfcvz5mqzunkvqw368wmodb.png)
Therefore the acceleration due to gravity on the planet is 39.2 m/s^2