155k views
2 votes
How to find the denominator, the associates of x & y

How to find the denominator, the associates of x & y-example-1
User Dave Moten
by
7.3k points

1 Answer

4 votes

Given the following System of equations:


\begin{cases}-3x+2y=18 \\ -2x-y=5\end{cases}

You can identify that it has this form:


\begin{cases}a_1x+b_1y=c_1_{} \\ a_2x+b_2y=c_2\end{cases}

Where:


\begin{gathered} a_1=-3 \\ a_2=-2 \\ b_1=2 \\ b_2=-1 \\ c_1=18_{} \\ c_2=5 \end{gathered}

The determinant D is, by definition:


D=\begin{bmatrix}{a_1} & {b_1} & {} \\ {a_2} & {b_2} & {} \\ {} & {} & \end{bmatrix}=a_1b_2-a_2b_1

Then, in this case this is:


D=\begin{bmatrix}{-3} & {2_{}} & {} \\ {-2_{}} & {-1_{}} & {} \\ {} & {} & \end{bmatrix}=(-3)(-1)-(-2)(2)=7

By definition, the determinant associated with "x" is given by:


D_x=\begin{bmatrix}{c_1} & {b_1} & {} \\ {c_2} & {b_2} & {} \\ {} & {} & \end{bmatrix}=c_1b_2-c_2b_1

Then, in this case:


D_x=\begin{bmatrix}{18_{}} & {2_{}} & {} \\ {5_{}} & {-1_{}} & {} \\ {} & {} & \end{bmatrix}=(18)(-1)-(5)(2)=-28

The determinant associated with "y" is given by:


D_y=\begin{bmatrix}{a_1} & {c_1} & {} \\ {a_2} & {c_2} & {} \\ {} & {} & \end{bmatrix}=a_1c_2-a_2c_1

Then, this is:


D_y=\begin{bmatrix}{-3_{}} & {18_{}} & {} \\ {-2_{}} & {5_{}} & {} \\ {} & {} & \end{bmatrix}=(-3)(5)-(-2)(18)=21

The solution of the System of equations can be found as following:

1. For the x-coordinate:


x_{}=(D_x)/(D)=(-28)/(7)=-4

2. For the y-coordinate:


y=(D_y)/(D)=(21)/(7)=3

The answers are:


\begin{gathered} D=7 \\ D_x=-28 \\ D_y=21 \\ \text{Solution}=(-4,3) \end{gathered}

User Pitos
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories