The given value is:
![\sin X=(3)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/nfjyru19lt89uckho0f6x9a1kt3djf8asj.png)
It is required to find the value of sec X given that X is an acute angle.
Recall the trigonometry identity:
![\sin^2X+\cos^2X=1](https://img.qammunity.org/2023/formulas/mathematics/college/60lx5kd9rfzhm3pf222hzrdu9ud8if4yxb.png)
Substitute sin X=3/5 into the equation:
![\begin{gathered} ((3)/(5))^2+\cos^2X=1 \\ \Rightarrow(9)/(25)+\cos^2X=1 \\ \Rightarrow\cos^2X=1-(9)/(25) \\ \Rightarrow\cos^2X=(16)/(25) \\ \Rightarrow\cos X=\pm\sqrt{(16)/(25)}=\pm(4)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fkf2s579bte9jstcovklr4oqks5ngv7wfm.png)
Since X is acute, the cosine of X must be positive.
It follows that:
![\cos X=(4)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/jnbui14j8d57ghzbvi6cmp44cxiafiahzv.png)
Recall the reciprocal identity:
![\sec X=(1)/(\cos X)](https://img.qammunity.org/2023/formulas/mathematics/college/q2icnvqqa0rhq0lx6ntq18qcn5c0077n3p.png)
Substitute cos X = 4/5 into the reciprocal identity:
![\sec X=(1)/(((4)/(5)))=(5)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/k1982khmr56scsofryc0cs2zp33becm8p1.png)
Hence, the answer is sec X = 5/4.
The answer is sec X = 5/4.