167k views
4 votes
one of the triangles you cut out is shown below. List the angles of ABC in order from smallest to largest

one of the triangles you cut out is shown below. List the angles of ABC in order from-example-1
User Micaela
by
3.8k points

1 Answer

5 votes
Answer:

The angles of ABC from smallest to largest: 52.83°, 57.53°, 69.64°

Step-by-step explanation:

Given:

AC = 18in, AB = 20 in, BC = 17 in

To find:

the angles of ABC from smallest to largest

To determine the angles, we will apply cosine rules:


a^2\text{ = b}^2\text{ + c}^2\text{ - 2bcCosA}
\begin{gathered} c\text{ = side opposite angle C}=\text{ AB} \\ c\text{ = 20} \\ b\text{ = side opposite angle B = AC} \\ b\text{ = 18} \\ a\text{ = side oppsite angle A = BC} \\ a\text{ = 17} \end{gathered}
\begin{gathered} 17^2\text{ = 18}^2\text{ + 20}^2-\text{ 2\lparen18\rparen\lparen20\rparen cos A} \\ \\ 289\text{ = 724 -720cosA} \\ \\ -435\text{ = -720cosA} \\ \\ cosA\text{ = }(-435)/(-720)\text{ = 0.6042} \\ \\ A\text{ = cos}^(-1)(0.6042) \\ \\ A=\text{ 52.83\degree} \end{gathered}
\begin{gathered} To\text{ get B, we will use the formula:} \\ b^2\text{ = a}^2\text{ + c}^2\text{ - 2acCosB} \\ \\ 18^2\text{ = 17}^2\text{ + 20}^2\text{ - 2\lparen17\rparen\lparen20\rparen cosB} \\ \\ 324\text{ = 689 -680cosB} \\ \\ -365\text{ = -680cosB} \\ \\ cosB\text{ = }(-365)/(-680)=\text{ 0.5368} \\ \\ B\text{ = cos}^(-1)(0.5368) \\ \\ B=\text{ 57.53\degree} \end{gathered}
\begin{gathered} To\text{ get C, wewill apply sum of angles in a triangle:} \\ A+\text{ B}+\text{ C}=\text{ 180\degree} \\ \\ 52.83°\text{ + 57.53\degree +}C=\text{ 180} \\ \\ 110.36\text{ + C = 180} \\ \\ C\text{ = 180 - 110.36} \\ \\ C=\text{ 69.64\degree} \end{gathered}

The angles of ABC from smallest to largest: 52.83°, 57.53°, 69.64°

User Mehul Parmar
by
3.6k points