The formula for compound interest is:
![\begin{gathered} A=P(1+(r)/(n))^(nt) \\ \text{where,} \\ A=\text{ Final amount} \\ r=\text{ Interest rate} \\ n=\text{ Number of times interest applied per period} \\ t=\text{ Number of time period elapsed} \\ P=\text{ Intial principal balance} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3blpzyyeqhtxr84z1u8py34jvtsvl5vp52.png)
Given data:
![\begin{gathered} P=\text{ \$1500} \\ r=6\text{ \%}=0.06 \\ n=4\text{ times (compounded quarterly)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bcq3ii0u4546k7ht9dtk4olyu67f353qbw.png)
a. After ten years, that is t = 10 years, the amount in the account will be
![\begin{gathered} A=1500(1+(0.06)/(4))^(4*10) \\ A=\text{ }1500(1+0.015)^(40) \\ A=\text{ }1500(1.015)^(40) \\ A=\text{ \$2721.03} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i2e4bziy2blkpmdlvnwuuy762425za9skr.png)
b. After twenty years, that is t = 20 years, the amount in the account will be:
![\begin{gathered} A=1500(1+(0.06)/(4))^(4*20) \\ A=1500(1.015)^(4*20) \\ A=1500(1.015)^(80) \\ A=\text{ \$}4935.99 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h50p97nof7005turzhejkgfbe1kez3koh2.png)
c. The time it takes for Harry's initial account value to double will be:
![\begin{gathered} A=2\text{ x initial value = 2 }*\text{ \$1500 = \$3000} \\ 3000=1500(1.015)^(4t) \\ (1.015)^(4t)=(3000)/(1500) \\ (1.015)^(4t)=2 \\ \text{ Find the logarithm of both sides} \\ \ln (1.015)^(4t)=\ln 2 \\ 4t=(\ln 2)/(\ln 1.015) \\ 4t=46.56 \\ t=(46.56)/(4)=11.64 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p34ox0o1kl58zwslaobvmgbyfjhhruzsng.png)
Therefore, the time it takes Harry's initial account to double is approximately 11 years