From the question
The slope of the graph is
![m\text{ = -0.5}](https://img.qammunity.org/2023/formulas/mathematics/college/dmuyjg1nvig9w2vcc4ysttug9ua8j2gs0w.png)
using the equation of a line
![y\text{ = mx + c}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bytb7ot4w7zxklso4u7p42dp2xh741ioqe.png)
we can find the intercept C, where m is the slope of the line
From the question,
the height of the candle after 17 hours is 16.5 centimeters implies
![\begin{gathered} x\text{ = 17 hours} \\ y\text{ = 16.5cm} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gr3qae3v50xawfpc3o6c2sss6pv2lh9vw5.png)
Using this information we can get the intercept C.
Substitute the values of x, y and m into the equation of line
![\begin{gathered} \text{x = 17, y = 16.5 , m = -0.5 } \\ y\text{ = mx + c} \\ 16.5\text{ = -0.5(17) + C} \\ 16.5\text{ = -8.5 + C} \\ 16.5\text{ + 8.5 = C} \\ C\text{ = 25} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lrzrxzcu9k2aobeotq01posurtw3i7gkmz.png)
Now we need to find the height of the candle after 13hours
therefore, x = 13, m = -0.5, C = 25
![\begin{gathered} y\text{ = mx + c} \\ y\text{ = -0.5(13) + 25} \\ y\text{ = -6.5 + 25} \\ y\text{ = 18.5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g5okn4jmozuomx779nkdlh3h1diiqyycpf.png)
Therefore,
The height of the candle after 13hours is 18.5 centimeters