Solution
Step 1:
![\begin{gathered} If\text{ y varies directly as square root of x.} \\ We\text{ have,} \\ y\text{ }\propto\sqrt[]{x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w0g5vo2he5k3egm8wr77h7f6d9zddfvloi.png)
Step 2:
Plug in constant k to change the proportionality sign into an equal sign.
![\begin{gathered} y\text{ }\propto\sqrt[]{x} \\ y=k\sqrt[]{x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/80doyq1abdibot8ehgh7hk9aldm9vlg4v1.png)
Step 3:
Substitute the values of x = 81 and y = 45 to find the value of constant k.
![\begin{gathered} \text{y = k}\sqrt[]{x} \\ 45\text{ = k}\sqrt[]{81} \\ 45\text{ = 9k} \\ \text{Divide both sides by 9 to find the value of k.} \\ k\text{ = }(45)/(9) \\ k\text{ = 5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xpuljmus2coho908hdmzmb2ut5ml3qgtzr.png)
Step 4:
Write an equation describing the relationship of the given variables.
![\begin{gathered} \text{y = k}\sqrt[]{x} \\ y\text{ = 5}\sqrt[]{x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9rq447ehie1r7zqwwn4opjxwb7o5vv3laj.png)
Final answer
![\text{y = 5}\sqrt[]{x}](https://img.qammunity.org/2023/formulas/mathematics/college/b1clos4xbcr9mkvdz08hji2ytxq0wnjpw9.png)