The trinomial is given to be:
![20x^2+13x-7](https://img.qammunity.org/2023/formulas/mathematics/college/52petyf2y28up8trf8njgnsfh4n6jancbc.png)
STEP 1:
Rewrite the middle term such that we can break the expression. Multiply the first and last terms of the expression:
![20x^2*(-7)=-140x^2](https://img.qammunity.org/2023/formulas/mathematics/college/i4tiuvf1115r2vl502x8kvhy6bmf8r5pzb.png)
Find two multipliers of -140x² that will add up to +13x:
![Multipliers=20x,-7x](https://img.qammunity.org/2023/formulas/mathematics/college/md62azdmj4grojmaqrppoz9p2kwkdis59w.png)
Replace 13x in the expression by the multipliers:
![20x^2+20x-7x-7](https://img.qammunity.org/2023/formulas/mathematics/college/y9up8r4g53rl9ajazghic3i0sz35rxl8t9.png)
STEP 2:
Collect the common terms in each pair of numbers:
![\Rightarrow20x(x+1)-7(x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/3i1beaf50fpc3l5rzdj35g4wfzsil612oa.png)
STEP 3:
Factor the expression by collecting the like terms:
![\Rightarrow(x+1)(20x-7)](https://img.qammunity.org/2023/formulas/mathematics/college/w7le3tq8oax6kdyxg0fahttht34foq3ck3.png)
ANSWER:
The factored expression is:
![(x+1)(20x-7)](https://img.qammunity.org/2023/formulas/mathematics/college/5t4sw3y7pam9x1b2f7xww3w9xgtkbl8l4u.png)