In this case, if you equal the centripetal force to the force due to the magnitude of the gravitational field, you obtain:

By solving for v into the previous equation, you get:
![v=\sqrt[]{2Rg^(\prime)}](https://img.qammunity.org/2023/formulas/physics/college/mfqpt2b4qsd70lqdlwfotug2xduy3d1bfb.png)
where,
R: radius of the planet = 6.00*10^7 m
g; gravitational acceleration constant = 46.0 m/s^2
v: escape speed.
Replace the values of the parameters into the formula for v:
![\begin{gathered} v=\sqrt[]{2(6.00\cdot10^7m)(46.0(m)/(s^2))} \\ v\approx74,296.7(m)/(s) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/9sxepgwmgtl9dxie28aukxiahopnwe1yga.png)
Hence, the escape speed is approximately 74,296.7 m/s