187k views
0 votes
Hello it’s showing that I got part of the answer correctNot sure where I went wrong

Hello it’s showing that I got part of the answer correctNot sure where I went wrong-example-1
User Dan Busha
by
8.9k points

1 Answer

1 vote

The A matrix is:


\begin{bmatrix}{5} & {3} & {} \\ {-6} & {-3} & {} \\ {} & {} & {}\end{bmatrix}

We can write the system of equations in matrix form like this:


\begin{bmatrix}{5} & {3} & {} \\ {-6} & {-3} & {} \\ {} & {} & {}\end{bmatrix}\cdot\begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {} & {} & {}\end{bmatrix}=\begin{bmatrix}{8} & {} & {} \\ {-6} & {} & {} \\ {} & {} & {}\end{bmatrix}

And we can express that as this:


A\cdot X=B

Then the solution is:


X=A^(-1)\cdot B

Then, we need to find the inverse of the function to find the solution, start by calculating the determinant:


\begin{gathered} \text{ Determinant:} \\ d(A)=(5)\cdot(-3)-(-6)\cdot(3)=-15+18 \\ d(A)=3 \end{gathered}

The inverse function is:


\begin{gathered} A^(-1)=(1)/(\det(A))\begin{bmatrix}{-3} & {-3} & {} \\ {6} & {5} & {} \\ {} & {} & {}\end{bmatrix}=(1)/(3)\begin{bmatrix}{-3} & {-3} & {} \\ {6} & {5} & {} \\ {} & {} & {}\end{bmatrix} \\ A^(-1)=\begin{bmatrix}{-3/3} & {-3/3} & {} \\ {6/3} & {5/3} & {} \\ {} & {} & {}\end{bmatrix}=\begin{bmatrix}{-1} & {-1} & {} \\ {2} & {5/3} & {} \\ {} & {} & {}\end{bmatrix} \end{gathered}

Thus, the solution is:


\begin{gathered} \begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {} & {} & {}\end{bmatrix}=\begin{bmatrix}{-1} & {-1} & {} \\ {2} & {5/3} & {} \\ {} & {} & {}\end{bmatrix}\cdot\begin{bmatrix}{8} & {} & {} \\ {-6} & {} & {} \\ {} & {} & {}\end{bmatrix} \\ \end{gathered}

Now, solve the multiplication:


\begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {} & {} & {}\end{bmatrix}=\begin{bmatrix}{-1\cdot8+(-1)(-6)} & {} & {} \\ {2(8)+5/3\cdot(-6)} & {} & {} \\ {} & {} & {}\end{bmatrix}=\begin{bmatrix}{-2} & {} & {} \\ {6} & {} & {} \\ {} & {} & {}\end{bmatrix}

User FatalMerlin
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories