Given:
![a_1=9,a_2=13,a_3=17,a_4=21](https://img.qammunity.org/2023/formulas/mathematics/college/j662gwrwczsrwkqmnhc4qi254gr8wmthy1.png)
To find:
The nth term formula.
Step-by-step explanation:
The nth term formula is,
![a_n=a+(n-1)d](https://img.qammunity.org/2023/formulas/mathematics/high-school/t99kk5roieipg56xa37yseewl9ybc4zh6i.png)
The first term a = 9.
The common difference is,
![\begin{gathered} d=13-9 \\ =4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7t4i5wdqg54vng7vockw3zplo3u9pl9sev.png)
So, the nth term formula for the sequence is,
![\begin{gathered} a_n=9+(n-1)(4) \\ =9+4n-4 \\ =5+4n \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2u1myij2llck7dyyb6bhjahg37lm2nax9q.png)
Therefore, the nth term formula is,
![a_n=5+4n](https://img.qammunity.org/2023/formulas/mathematics/college/ydafoat3skd6sfb7o358rrjpvkg64duqcl.png)
Final answer:
The nth term formula is,
![a_n=5+4n](https://img.qammunity.org/2023/formulas/mathematics/college/ydafoat3skd6sfb7o358rrjpvkg64duqcl.png)