Answer:
x-2y=-6.
Step-by-step explanation:
Given a line with a slope of 1/2 that passes through the point (2,4):
![\begin{gathered} m=(1)/(2) \\ (x_1,y_1)=(2,4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2uvur0omrcxpq97coq5a3911jzp62xvs3e.png)
Substitute these into the point-slope form of the equation of a line:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
This gives:
![\begin{gathered} y-4=(1)/(2)(x-2) \\ y-4=(1)/(2)x-(1)/(2)(2) \\ y-4=(1)/(2)x-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5brsds8jev4ymuawcxzjexuqyhdy5dxyif.png)
We can simplify further:
![\begin{gathered} y=(1)/(2)x-1+4 \\ y=(1)/(2)x+3 \\ \implies y=(x+6)/(2) \\ 2y=x+6 \\ x-2y=-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/24cvg7esavwwwhax6wepp4cmejle3tdxt9.png)
The equation of the line is x-2y=-6.