SOLUTION
Write out the equation
![3x+2y=30](https://img.qammunity.org/2023/formulas/mathematics/college/ml6ie2pbd1ipge226txxjntqcr206lwsj5.png)
The equation of a line in slope intercept form is given by
![\begin{gathered} y=mx+c \\ \text{Where} \\ m=\text{slope c=intercept} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6y1q1n4tgwndpcslmgefdn2lclhctpfmxq.png)
Hence
From the equation given, we make y the subject of the formula of the equation given.
![\begin{gathered} 3x+2y=30 \\ \text{Subtract 3x from both sides } \\ 3x-3x+2y=30-3x \\ \text{Then} \\ 2y=-3x+30 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gxwpqzb7xilruey3kqc7t8ud20bxn5pj34.png)
Divide both sides by 2
![\begin{gathered} (2y)/(2)=(-3x+30)/(2) \\ \text{Then} \\ y=-(3x)/(2)+(30)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tmnu12j6mpaibpn2mroyfv708jjsw0sn5x.png)
Hence
![y=-(3)/(2)x+15](https://img.qammunity.org/2023/formulas/mathematics/college/ua01b8yex2lt99wv7i3u7ipj9bfgefffzd.png)
Therefore
The equation of the line in slope intercept form is
y=-3/2x + 15