Given:
The value of each of the parallel resistances is,
![60\text{ ohm}](https://img.qammunity.org/2023/formulas/physics/college/1a8jlwdkjqw365ai189ttua8qvcvlqmyl8.png)
The resistance in series with it is,
![30\text{ ohm}](https://img.qammunity.org/2023/formulas/physics/college/f3qcu4k4gph4030epyrlrg60bokquaqnhu.png)
The potential difference across the combination is,
![V=120\text{ V}](https://img.qammunity.org/2023/formulas/physics/college/8o6rpnnryx9wp7189pisdd1l5cmil7a5w4.png)
To find:
The potential drop across the parallel portion
Step-by-step explanation:
The circuit diagram looks like:
The equivalent resistance of the circuit is,
![\begin{gathered} R=30.0+(60.0\parallel60.0) \\ =30.0+(60.0*60.0)/(60.0+60.0) \\ =30.0+30.0 \\ =60.0\text{ ohm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4nxwzz0akymcbl5eo3j3d8l7lia3utkewg.png)
The current through the circuit is,
![\begin{gathered} i=(V)/(R) \\ =(120)/(60.0) \\ =2.0\text{ A} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/xf5z8rsn9fuvatq4mvuxcw5776dxp4lf7o.png)
The potential drop across 30.0 ohm is,
![\begin{gathered} V_(30.0)=i*30.0 \\ =2.0*30.0 \\ =60\text{ V} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/m1dicuk0oqk82oceo68nptly776qezdn5l.png)
The potential drop across the rest parallel portion is,
![\begin{gathered} V_(rest)=V-V_(30.0) \\ =120-60 \\ =60\text{ V} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/9em1inuodrj640lattbluq7m4tku823e3v.png)
Hence, the voltage drop across the entire parallel portion is 60 V.