You have to see if the polynomial is factorable
![10x^2+5x-6=0](https://img.qammunity.org/2023/formulas/mathematics/college/xcyi1p37u2vrmhjo8vcax5tulq3q436mbt.png)
In this case, it isn't, so now see the grade of the polynomial, we can see that is grade 2, so we can use the quadratic formula to find the roots:
![x=(-b\pm√(b^2-4ac))/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/jr19ixi2zltkocy82qhxfiop5lyv4hzbkm.png)
the polynomial is in the form:
![ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/knmog89o03f8dx9fluvbqb64q9rt61y6kp.png)
So, replace
![x=(-5\pm√(5^2-(4*10*-6)))/(2*10)=(-5\pm√(25+240))/(20)=(-5\pm√(265))/(20)](https://img.qammunity.org/2023/formulas/mathematics/college/pzg4o2wypdem5dpu8igmq31hy3d437g36l.png)
So we have two imaginary roots
![x=(-5+√(265))/(20),\:x=(-5-√(265))/(20)](https://img.qammunity.org/2023/formulas/mathematics/college/q2axfcovbebe6m37e0wuzqukg7w5oelkl7.png)