ANSWER
• Parallelogram Area = 72 cm²
,
• Triangle Area = 24 cm²
,
• Area of composite figure = 96 cm²
Step-by-step explanation
The area of a parallelogram is the product between the length of the base and the height of the parallelogram,
![A_(parallelogram)=b\cdot h](https://img.qammunity.org/2023/formulas/mathematics/college/go6b219flmlrxmsztu3swml7rtr1p0emp2.png)
In this case, b = 12cm and h = 6cm,
![A_(parallelogram)=12cm\cdot6cm=72cm^2](https://img.qammunity.org/2023/formulas/mathematics/college/wk52bh6zqzvggv86su1wc2yalpffguafkt.png)
The area of a triangle of base b and height h is,
![A_(triangle)=(b\cdot h)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/yr057ouknymn5sysway12i7qlofisf9uwc.png)
In this case, b = 12cm and h = 4cm,
![A_(triangle)=\frac{12\operatorname{cm}\cdot4\operatorname{cm}}{2}=(48cm^2)/(2)=24cm^2]()
The area of the composite figure is the sum of the areas of the two figures,
![A_(figure)=A_(parallelogram)+A_(triangle)=72cm^2+24cm^2=96cm^2](https://img.qammunity.org/2023/formulas/mathematics/college/m8lmsxl4fo3lyskk2fwn86tiy43v1srq2t.png)
The total area of the composite figure is 96 cm²