179k views
4 votes
I need help with this math problem because I am having a hard time understanding the problem and finding the answer. Can u help me

I need help with this math problem because I am having a hard time understanding the-example-1

1 Answer

4 votes

Answer:


h(x)=(x+1)/(5x+7),Domain=All\text{ }Real\text{ }numbers,\text{ }except\text{ }x=-(3)/(2)\text{ }and\text{ }x=-(7)/(5)
h^(-1)(x)=(1-7x)/(5x-1),Domain=All\text{ }Real\text{ }numbers,\text{ }except\text{ }x=(1)/(5)

Step-by-step explanation:

The notation for composition of functions is:


(f\circ g)(x)=f(g(x))

In this case:


\begin{cases}f(x)={(x)/(x+2)} \\ g(x)={(x+1)/(2x+3)}\end{cases}

To do the composition, we replace the x in the f(x) with the function g(x):


(f\circ g)(x)=f(g(x))=(g(x))/(g(x)+3)=((x+1)/(2x+3))/((x+1)/(2x+3)+2)

And solve:


=((x+1)/(2x+3))/((x+1)/(2x+3)+2)=((x+1)/(2x+3))/((x+1)/(2x+3)+(2(2x+3))/(2x+3))=((x+1)/(2x+3))/((5x+7)/(2x+3))=((x+1)(2x+3))/((2x+3)(5x+7))

Here, we can calcualte the domain. The function is not defined when teh denominator is 0, thus:


2x+3=0\Rightarrow x=-(3)/(2)
5x+7=0\Rightarrow x=-(7)/(5)

Since the function can't be evaluated when x = -3/2, we can cancel the terms (2x+3) in the numerator and denominator:


((x+1)(2x+3))/((2x+3)(5x+7))=(x+1)/(5x+7)

Thus:


\begin{equation*} h(x)=(x+1)/(5x+7),Domain=All\text{ }Real\text{ }numbers,\text{ }except\text{ }x=-(3)/(2)\text{ }and\text{ }x=-(7)/(5) \end{equation*}

Now, to find the inverse of the function, we first switch the variables:


y=(x+1)/(5x+7)\Rightarrow x=(y+1)/(5y+7)

And solve for y:


\begin{gathered} \begin{equation*} x=(y+1)/(5y+7) \end{equation*} \\ . \\ x(5y+7)=y+1 \\ . \\ 5xy+7x=y+1 \\ . \\ 5xy-y=1-7x \\ . \\ y(5x-1)=1-7x \\ . \\ y=(1-7x)/(5x-1)\Rightarrow h^(-1)(x)=(1-7x)/(5x-1) \end{gathered}

And since the denominator can't be 0:


5x-1=0\Rightarrow x=(1)/(5)

Thus:


\begin{equation*} h^(-1)(x)=(1-7x)/(5x-1),Domain=All\text{ }Real\text{ }numbers,\text{ }except\text{ }x=(1)/(5) \end{equation*}

User Freshking
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories