ANSWER:
The numbers are 65 and 36
Explanation:
From the statement we can propose the following system of equations:
![\begin{gathered} x-y=29\rightarrow x=29+y\text{ (1)} \\ x\cdot y=2340\text{ (2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tbf650g1dwep7n3fu9qgaiwbz8refyi1xc.png)
We replace equation (1) in equation (2), and solve for y, like this:
![\begin{gathered} (29+y)\cdot y=2340 \\ y^2+29y=2340 \\ y^2+29y-2340=0 \\ (y-36)\cdot(y+65)=0 \\ y-36=0\rightarrow y=36 \\ y+65=0\rightarrow y=-65 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3sx02a6qnl7n2ecgmi6mpwa0vx9k15wlsq.png)
Since it must be a positive number, one of the two numbers is 36. And the other would be:
![\begin{gathered} x=29+36 \\ x=65 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vozs0swtm4w1qsujtdri825sojmdbq95b1.png)