Step-by-step explanation
From the statement, we have an arithmetic sequence with:
• common difference d = 4,
,
• 3rd term a₃ = 19.
We must find the 77th term.
(1) The general formula for the nth term of an arithmetic sequence is:
![a_n=a_1+(n-1)\cdot d.](https://img.qammunity.org/2023/formulas/mathematics/college/eumwpcucgwbwj996ajzkv9claqaxhli3ur.png)
Replacing the data from above, we have:
![a_n=a_1+4(n-1).](https://img.qammunity.org/2023/formulas/mathematics/college/f85tulnoup7z7l87turtqkv3x0v3w2xf8v.png)
(2) We compute the a₁. Replacing the n = 3 and a₃ = 19, we have:
![\begin{gathered} a_3=a_1+4(3-1), \\ 19=a_1+8. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3pde6304iihxnr43y97q2zpxlguyu9odnr.png)
Solving for a₁, we get:
![a_1=19-8=11.](https://img.qammunity.org/2023/formulas/mathematics/college/xt0udssvgxdd21ft1gdprrn59mch7c0ddz.png)
Replacing this value in the general formula, we have:
![a_n=11+4(n-1).](https://img.qammunity.org/2023/formulas/mathematics/college/c8180a2vo2esigv4hv4dwnnctadtmiiyuq.png)
(3) Evaluating the general formula for n = 77, we get the 77th term of the sequence:
![a_(77)=11+4\cdot(77-1)=11+304=315.](https://img.qammunity.org/2023/formulas/mathematics/college/xlu5zlgkertsj16jp3zocx8rhzsulxadwx.png)
Answer
a₇₇ = 315