ANSWER
= sec(t)
Step-by-step explanation
First let's rewrite this in terms of sines and cosines:
![(\cot t)/(\csc t-\sin t)](https://img.qammunity.org/2023/formulas/mathematics/college/nlwn7mhwzrrevra7yss6jj13gwnawsm4b0.png)
The cotangent is the reciprocal of the tangent:
![\cot t=(1)/(\tan t)=(\cos t)/(\sin t)](https://img.qammunity.org/2023/formulas/mathematics/college/xnaxtv28bm31dibnrjkmon314cpqg9195n.png)
And the cosecant is the reciprocal of the sine:
![\csc t=(1)/(\sin t)](https://img.qammunity.org/2023/formulas/mathematics/college/23earec4glvfi0b1djuyehc9jjmc0y2jja.png)
Replace into the given expression:
![(\cot t)/(\csc t-\sin t)=((\cos t)/(\sin t))/((1)/(\sin t)-\sin t)](https://img.qammunity.org/2023/formulas/mathematics/college/vp1j68e8n1mwarfsb8m5pfyxtx83be7usf.png)
We can add the two terms in the denominator:
![((\cos t)/(\sin t))/((1)/(\sin t)-\sin t)=((\cos t)/(\sin t))/((1-\sin ^2t)/(\sin t))](https://img.qammunity.org/2023/formulas/mathematics/college/tglw72tqe4k6ouqc4f2xfz3xnemawvdlbt.png)
The denominators of each fraction get cancelled out:
![((\cos t)/(\sin t))/((1-\sin^2t)/(\sin t))=(\cos t)/(1-\sin ^2t)](https://img.qammunity.org/2023/formulas/mathematics/college/xqxnrf6i4ig3i89kpb9bni23lexjn8sv5v.png)
We still can simplify this a little further. Remember the identity:
![\cos ^2t+\sin ^2t=1](https://img.qammunity.org/2023/formulas/mathematics/college/n468y4qbetsfngirny49f0xzvwf4nmg1cx.png)
If we solve it for cos²t:
![\cos ^2t=1-\sin ^2t](https://img.qammunity.org/2023/formulas/mathematics/college/vjeyf6nghi5ou3td8zjiact19ugstfr366.png)
We have the same expression of the denominator. So let's replace the denominator by cos²t:
![(\cos t)/(1-\sin^2t)=(\cos t)/(\cos ^2t)](https://img.qammunity.org/2023/formulas/mathematics/college/se6ln70phjmhph1xrfey5udyysm1mxd84x.png)
Simplify the square:
![(\cos t)/(\cos^2t)=(1)/(\cos t)](https://img.qammunity.org/2023/formulas/mathematics/college/uca0l8t39y9qvl2xz9oczpxot7jea5taj8.png)
And this is the secant of t:
![(1)/(\cos t)=\sec t](https://img.qammunity.org/2023/formulas/mathematics/college/stpx0xlz8xev22rrmev9fbry1two8e71v1.png)