Given:
The inductance is,
![L=150\text{ mH}](https://img.qammunity.org/2023/formulas/physics/college/1kx3o41thszgj75anoatzcpo3a2ymcvqid.png)
The current is,
![i=1.6\text{ A}](https://img.qammunity.org/2023/formulas/physics/college/xytotjkn231m3q1qwtgtqzd2jicov2c0px.png)
The frequency of the current is,
![f=60\text{ Hz}](https://img.qammunity.org/2023/formulas/physics/high-school/k2qemfqzegxwwoifg4oglieomdwdca8efq.png)
To find:
The phase angle between the current and the voltage
Step-by-step explanation:
The phase angle between the current and the voltage is,
![\Phi=tan^(-1)(X_L)/(R)](https://img.qammunity.org/2023/formulas/physics/college/vsw0ck28k8f7ldsgbpnf6k12zerzcbkcl0.png)
As the circuit is purely inductive,
![R=0](https://img.qammunity.org/2023/formulas/physics/college/gfdg82byrp744ekdlp74yo22ro8fg1y9qb.png)
The phase angle is,
![\begin{gathered} \Phi=tan^(-1)(2\pi fL)/(0) \\ \Phi=90\degree \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/g2neb3rvlzf884lzrz3t78y6r3xpls0d0q.png)
Hence, the phase angle is 90 degrees.