The distance (d) between two numbers a and b equals the absolute value of their difference:
![d=|a-b|](https://img.qammunity.org/2023/formulas/mathematics/college/qec1pks9d1ntnov3dxmvezjy2e7pzwm22d.png)
If a number x is at a distance of 1/4 from the number -5, then:
![|x-(-5)|=(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/ug0bas13l0ix4jler1kz1mymjwxp939up7.png)
Solve for x. Remember that when an equation involves a variable inside an absolute value, two cases must be considered: If the expression inside the absolute value is positive or if it is negative.
Case 1: x-(-5) is positive.
Then:
![|x-(-5)|=x-(-5)](https://img.qammunity.org/2023/formulas/mathematics/college/e5rtsxfw1krkb2wt8uw3hpl0bm90yel3hs.png)
Solve for x:
![\begin{gathered} |x-(-5)|=(1)/(4) \\ \Rightarrow x-(-5)=(1)/(4) \\ \Rightarrow x+5=(1)/(4) \\ \Rightarrow x=(1)/(4)-5 \\ \therefore x=-(19)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7hjuhpr58ssqa8lj5duzxii2kymrwjc2z0.png)
Case 2: x-(-5) is negative.
Then:
![|x-(-5)|=-(x-(-5))](https://img.qammunity.org/2023/formulas/mathematics/college/bs0lgflp6hyjo13ukhhc2t77lqqiehzvla.png)
Solve for x:
![\begin{gathered} |x-(-5)|=(1)/(4) \\ \Rightarrow-(x-(-5))=(1)/(4) \\ \Rightarrow-(x+5)=(1)/(4) \\ \Rightarrow x+5=-(1)/(4) \\ \Rightarrow x=-(1)/(4)-5 \\ \therefore x=-(21)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hkvq4idhlqw3m4hu0ig41uxcydpkj05l3m.png)
Therefore, all the numbers that are at a distance of 1/4 from the number -5 are -21/4 and 19/4. They can be described by the equation:
![|x-(-5)|=(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/ug0bas13l0ix4jler1kz1mymjwxp939up7.png)