Interior angles of a triangle add up to 180, this imply that
![(y-10)+4y+20=180](https://img.qammunity.org/2023/formulas/mathematics/college/u9rjrtsko5pnj175i7f2ylv92et1mnj0r0.png)
Now, by combining similar terms, we have
![y+4y-10+20=180](https://img.qammunity.org/2023/formulas/mathematics/college/e3l3nonceeoyrrk4ym025x470zqq361syl.png)
which gives
![5y+10=180](https://img.qammunity.org/2023/formulas/mathematics/college/jxkt0pb8nwwqn7tannbptjfaiiq73waap1.png)
If we movw +10 to the right hand side as -10, we obtain
![\begin{gathered} 5y=180-10 \\ 5y=170 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pakaaz43499tmz9p631okbbnehzwadmqw0.png)
then, y is equal to
![\begin{gathered} y=(170)/(5) \\ y=34 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pvm6l63uhp2phf4brhj1ec8ijat68mqq4x.png)
Now, we can substitute this values in order to find the measure of each angle:
![\begin{gathered} (y-10)\Rightarrow34-10=24 \\ \text{and} \\ 4y\Rightarrow4(34)=136 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4pm0sg8noj0ygm5jozy7h53rr1q1ni4p60.png)
Therefore, the angles are 24, 136 and 20 degrees.