Given,
The measure of base of the triangle is 17.
The measure of Hypotenuse of the triangle is 19.
As, the triangle is right angled triangle.
By using Pythagoras theorem,
![(\text{perpendicular})^2=(\text{base})^2+(\text{perpendicular})^2](https://img.qammunity.org/2023/formulas/mathematics/college/lw2of0wp9ss6jspth0s3vipnznbz7mzsfu.png)
Substituting the measure of the sides of the triangle,
![\begin{gathered} 19^2=17^2+(\text{perpendicular})^2 \\ (\text{perpendicular})^2=19^2-17^2 \\ (\text{perpendicular})^2=361^{}-289 \\ (\text{perpendicular})^2=72 \\ \text{perpendicular})^{}=√(72) \\ \text{perpendicular}=8.49 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9p16zkbwggffmk2vljhl7vaf3kk0zxu1jf.png)
Hence, the measure of the perpendicular of the triangle is 8.49 (approx).