461,224 views
24 votes
24 votes
Help fast plz 100 points!

Help fast plz 100 points!-example-1
User Habibah
by
2.9k points

2 Answers

28 votes
28 votes

Answer:


\huge \boxed{ \boxed {\sf \: a)49 {x}^(2) + 14x + 1}}

Explanation:

to understand this

you need to know about:

  • composition of function
  • PEMDAS

tips and formulas:


  • (g \circ f)x \iff g(f(x))

let's solve:


  1. \sf sustitute \: the \: value \: of \: f(x) \: to \: g(x) : \\ \sf (7x + 1 {)}^(2)

  2. \sf use \: (a + b {)}^(2) = {a}^(2) + 2ab + {b}^(2) \: to \: simplify : \\ (7x {)}^(2) + 2.7x.1 + ( {1)}^(2)

  3. \sf simplify : \\ 49 {x}^(2) + 14x + 1
User Bassel Samman
by
3.2k points
13 votes
13 votes

___________________________________


\huge\underline{\tt{\red{Problem:}}}

  • Given
    \tt{f(x) = 7x + 1}and
    \tt{g(x) = {x}^(2) }find,
    \tt{( \: g \: \: • \ \: f \: )(x)}.


\huge\underline{\tt{\red{Formula:}}}


\tt{( \: g \: \: • \ \: f \: )(x)}.


\huge\underline{\tt{\red{Solution:}}}


\quad\quad\quad\quad \tt{ ({x}^(2) )(7x + 1)}


\quad\quad\quad\quad \tt{ ({x}^(2) )(7x) = 7{x}^(3) }


\quad\quad\quad\quad \tt{ ({x}^(2) )( 1) = {x}^(2) }

Let's add it.


\quad\quad\quad\quad \boxed{\tt{ {7x}^(3) + {x}^(2) }}


\huge\underline{\tt{\red{Answer:}}}


\huge \quad\quad \underline{\red{ \boxed{\tt{{7x}^(3) + {x}^(2) }}}}

___________________________________

#CarryOnLearning

✍︎ C.Rose❀

Help fast plz 100 points!-example-1
User RichardLiu
by
3.4k points