We will have the following:
First, we determine the probability of stuffed crust and pan style:
![\begin{gathered} P_1=(161)/(894) \\ \\ P_2=(196)/(894)\Rightarrow P_2=(98)/(447) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/re9s7iop9qsw6dlsenbvt7aptsp1ax1yd3.png)
Now, we will have that the probability of P1 or P2 is given by:
![\begin{gathered} P_1orP_2=P_1+P_2\Rightarrow P_1orP_2=(161)/(894)+(98)/(447) \\ \\ \Rightarrow P_1orP_2=(119)/(298) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dv80euvjdmere6cz2glu1pqb9rapomcr45.png)
Now, from the next 1500 we will have that:
![1500((119)/(298))\approx599](https://img.qammunity.org/2023/formulas/mathematics/college/mpyhoyi203zavjyjhug6r9wn402ykt2kp9.png)
So, from the next 1500 pizzas we can expect approximately 599 pizzas to be stuffed crust or pan style.