Answer:
(a)2.2 units
(b)(-2.5, 3)
Step-by-step explanation:
From the diagram, the coordinates of A, B and C are:
A(-3,2), B(-2,4) and C(-1,3)
(a)To determine the length of AC, we use the distance formula.


Therefore:
![\begin{gathered} AC=\sqrt[]{(-1-(-3))^2+(3-2)^2} \\ =\sqrt[]{(-1+3)^2+(1)^2} \\ =\sqrt[]{2^2+1^2} \\ =\sqrt[]{5} \\ =2.2\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fns0bmba864tlee7pxh8wjog7e61em588h.png)
The length of AC is 2.2 units
(b)The midpoint of a line segment is calculated using the formula:

Given the coordinates of A and B as follows:
A(-3,2), B(-2,4)
The midpoint of AB is:

The midpoint of AB is (-2.5, 3).