Given:
Nuts = $2.50
Cereal mixture = $1
Find -: How much each should be added.
Sol:
Obtain = 60 kg.
Let nuts = x kg
Cereal = y kg
To obtain 60 kg means:
![\begin{gathered} x+y=60 \\ \\ y=60-x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dkb3guy4zi8r9ptxrtrjdzekommxklzluu.png)
Pricing at $1.90 per kg means:
![\begin{gathered} x(2.50)+y(1)=60(1.90) \\ \\ 2.5x+y=114 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/civj02fb4sxtw5zxdz7bbd4yi4yzzb482u.png)
Put the value of "y" then:
![\begin{gathered} 2.5x+60-x=114 \\ \\ 1.5x=114-60 \\ \\ 1.5x=54 \\ \\ x=(54)/(1.5) \\ \\ x=36 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8qnunmns8tc2vibeutakh6sd54esubfrz3.png)
Then the value of "y" is:
![\begin{gathered} y=60-x \\ \\ y=60-36 \\ \\ y=24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/x3hydfell4rssbwioh95s173zynlf5bkk8.png)
So,
In the mixture 36 kg of nuts and 24 kg of cereal.