127k views
2 votes
Factor x^4-5x^2+4 completely

1 Answer

1 vote

Set


x^4-5x^2+4=0

Then, if y=x^2;


\begin{gathered} y=x^2 \\ \Rightarrow x^4-5x^2+4=y^2-5y+4=0 \\ \Rightarrow y^2-5y+4=0 \end{gathered}

Solve for y using the quadratic equation formula, as shown below


\begin{gathered} \Rightarrow y=\frac{-(-5)\pm\sqrt[]{(-5)^2-4\cdot1\cdot4}_{}}{2\cdot1}=\frac{5\pm\sqrt[]{25-16}}{2}=(5\pm3)/(2) \\ \Rightarrow y=4,1 \end{gathered}

Therefore, since y=x^2,


\begin{gathered} \Rightarrow x^2=4,x^2=1 \\ \Rightarrow x=\pm2,x=\pm1 \end{gathered}

Finally,


\Rightarrow x^4-5x^2+4=(x-2)(x+2)(x-1)(x+1)

The factored form of x^4-5x^2+4 is (x-2)(x+2)(x-1)(x+1)

User Jim Jin
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories