Given:
The boat moves at a rate = 15 meters per second
The telescope is 40 meters above the water level
Let the distance between the boat and tower of the telescope = x
so,
![\begin{gathered} \tan \theta=(x)/(40) \\ \\ x=40\tan \theta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cu4lb8jnqrrd6lo0j0tfkoxzu9yfrlid1r.png)
Differentiate both sides with respect to the time (t)
![(dx)/(dt)=40\cdot\sec ^2\theta\cdot(d\theta)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/college/vemivhdmo8yefkqpasrsnbqoo49qdpupv9.png)
Where: (dx/dt) is the speed of the boat
(dθ/dt) is the change of the angle of the telescope
Substitute with (dx/dt = 15) and
When the boat is 260 meters from shore
![\begin{gathered} \tan \theta=(260)/(40)=6.5 \\ \theta=\tan ^(-1)6.5\approx81.254\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cmhch1tkqa1hmr27v10hiyyqeojww5fd7v.png)
so,
![\begin{gathered} 15=40\cdot(\sec 81.254)^2\cdot(d\theta)/(dt) \\ \\ (d\theta)/(dt)=(15)/(40\cdot(\sec 81.254)^2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/36bljn3a0n38pbov5p3o9qsbbnek2mlf8w.png)
Using the calculator:
![(d\theta)/(dt)=0.0087](https://img.qammunity.org/2023/formulas/mathematics/college/ulqfwndb6t2f1mhax6facta9rk92667qsp.png)
so, the answer will be 0.0087 degrees per seconds
Convert from to radians per second
So,
![0.0087\cdot((\pi)/(180))=0.0002\text{ rad/s}](https://img.qammunity.org/2023/formulas/mathematics/college/ytpwtc5dw4jaare24ihjcmnnn70q8zg9am.png)