Let's start by sketching the triangle:
For the trignometric rates, we have:

So firts, let's find the missing side using Pythagora's Theorem:
![\begin{gathered} FG^2+EF^2=EG^2 \\ 4^2+EF^2=10^2 \\ EF^2=100-16 \\ EF=\sqrt[]{84}=\sqrt[]{4\cdot21}=2\sqrt[]{21} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zm0r9uwhk7zh963wo52iuy1gt7xullc80v.png)
For E, the opposite leg is FG and the adjancet leg is EF, so:
![\cos E=(EF)/(EG)=\frac{2\sqrt[]{21}}{10}=\frac{\sqrt[]{21}}{5}](https://img.qammunity.org/2023/formulas/mathematics/college/slxbkjhwgcggl7ogocbom781bqestiems0.png)
For G, the opposite leg is EF and the adjacent leg is FG, so:

And:
![\tan G=(EF)/(FG)=\frac{2\sqrt[]{21}}{4}=\frac{\sqrt[]{21}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/d81hvhe7ag1ck1k639ufes7u20t5193loe.png)