Solution:
The standard equation of a hyperbola is expressed as
![\begin{gathered} (\left(y-k\right)^2)/(a^2)-(\left(x-h\right)^2)/(b^2)=1\text{ ---- equation 1} \\ \text{where} \\ (h,\text{ k) is the coordinate of its center} \\ a\text{ is the axis} \\ b\text{ is the conjugate axis} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/61dpy3uqxixa3g4i8m2dxebp6lzijwh517.png)
Given the equation of the hyperbola to be
![y^2-x^2=81\text{ ---- equation 2}](https://img.qammunity.org/2023/formulas/mathematics/college/z7x411cmtcrg4d6l690zzsbygdrzgdpbh8.png)
Express equation 2 in a similar form as equation 1.
Thus,
![\begin{gathered} y^2-x^2=81 \\ \text{divide both sides of the equation by 81} \\ (y^2-x^2)/(81)=(81)/(81) \\ \Rightarrow(y^2)/(9^2)-(x^2)/(9^2)=1\text{ ---- equation 3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xr84103kh7igqnz1azmg6isycwlumvqi6i.png)
In comparison with equation 1, we can conclude that
![\begin{gathered} a=9 \\ b=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yoidrdl6faoin7hfseh7z3pjusfeiqrhcy.png)
Vertices of the hyperbola:
The vertices of the hyperbola are expressed as
![\mleft(h,k+a\mright),\: \mleft(h,k-a\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/dcag16zd7xzxf3kw1catw13laac88ixr13.png)
where
![h=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/6n0ymbeudjzx1x08op9ph8shr7bhgubeb7.png)
The vertices of the hyperbola are evaluated to be
![\begin{gathered} (h,\: k+a)\Rightarrow(0,\text{ 0+9)=(0, 9)} \\ (h,\: k-a)\Rightarrow(0,0-9)=(0,-9) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z7o1ex3cgctfwyjh4w3gfmzstoozjdhnpq.png)
Hence, the vertices of the hyperbola are
![(0,9),\text{ (0, -9)}](https://img.qammunity.org/2023/formulas/mathematics/college/62fodnez2w5ec0ejpmxonuh1lxpwbo2c1e.png)
Foci of the hyperbola:
The foci of the hyperbola are expressed as
![\begin{gathered} \mleft(h,k+c\mright),\: \mleft(h,k-c\mright) \\ \text{where c }\mathrm{\: }is\: the\text{ distance from the center (h,k) to a focus} \\ c\text{ is evaluated as } \\ c=√(a^2+b^2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kajsssbq9dwj5h3rrd13xs9d45sj8rfyy9.png)
Evaluating c gives
![\begin{gathered} c=√(a^2+b^2) \\ =\sqrt[]{9^2+9^2} \\ =\sqrt[]{81+81} \\ =\sqrt[]{162} \\ c=9\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/86v2c5fit3hs5o3tf1aeq2l5ww1zmt2wxx.png)
Thus, the foci are evaluated as
![\begin{gathered} (h,k+c)\Rightarrow(0,\text{ 0+9}\sqrt[]{2})=(0,9\sqrt[]{2}) \\ (h,k-c)\Rightarrow(0,\text{ 0-9}\sqrt[]{2})=(0,-9\sqrt[]{2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3oaroxxxdut69813rws7whusy6v1spv7yd.png)
Hence, the foci of the hyperbola are
![\mleft(0,\: 9√(2)\mright),\: \mleft(0,\: -9√(2)\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/s1z6ckd6836nler2lmo95j3ofsgx2s9i5p.png)