The given system is
![\begin{cases}x=y-8 \\ -x-y=0\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/7v3o52ifui3tixdh03tlhf2e563yohgfy5.png)
Step 1: We combine the first equation with the second one
![-(y-8)-y=0](https://img.qammunity.org/2023/formulas/mathematics/college/xnuejglua84jqejk7aehvzf0dczcxrg13j.png)
Step 2: Solve for y.
First, we use the distributive property, then we combine like terms
![\begin{gathered} -y+8-y=0 \\ -2y+8=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/znwh66c1z7qss74koge89ikfjetdn5hjw9.png)
Now, we subtract 8 from each side
![\begin{gathered} -2y+8-8=-8 \\ -2y=-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2tetn3etmqrh6700g946ba1sg1nnrgq1t4.png)
Then, we divide the equation by -2.
![\begin{gathered} (-2y)/(-2)=(-8)/(-2) \\ y=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vfj6zdc4cvgd596n3m01gn18mk1kla50tt.png)
Step 3: we solve for x.
![x=y-8=4-8=-4](https://img.qammunity.org/2023/formulas/mathematics/college/h9orqnldl317xbwl3ua6eeyiuugvbnz1va.png)
Step 4: Give Coordinate, we just have to write down the solutions as coordinates.
![(-4,4)](https://img.qammunity.org/2023/formulas/mathematics/college/2wmdzgc40do4f6yvew4zq97qtngdtcqpxv.png)