Given:
probability = p = 0.75
sample size = no. of peas = n = 20
A.) The mean of a binomial distribution is the product of the sample size n and the probability p.
![\text{ }\mu\text{ = np}](https://img.qammunity.org/2023/formulas/mathematics/college/6m8fvwk4fc06jr6vbtydg1z4vm8fhdovrh.png)
We get,
![\text{ }\mu\text{ = \lparen20\rparen\lparen0.75\rparen = 15}](https://img.qammunity.org/2023/formulas/mathematics/college/8yidhlxttvst5dedymmfx24d3nrmoaotyf.png)
Therefore, the mean is 15.
B.) The standard deviation of a binomial distribution is the square root of the product of the sample size, n, and the probability, p.
![\text{ }\sigma\text{ = }√(npq)\text{ = }\sqrt{np(1\text{ - p\rparen}}](https://img.qammunity.org/2023/formulas/mathematics/college/922bf72h1yakffe5p7y1e9c1idtgyqbi2i.png)
We get,
![\text{ }\sigma\text{ = }\sqrt{20(0.75)(1\text{ - 0.75\rparen}}](https://img.qammunity.org/2023/formulas/mathematics/college/ijrcowcnpntzufx7tgor52u9bixpx5tflh.png)
![\text{ }\sigma\text{ = 3.75}](https://img.qammunity.org/2023/formulas/mathematics/college/hzpsf3c0aghajdnvocq2hac66h2ejjbdxo.png)
Therefore, the standard deviation is 3.75