Given:
AB = 21 cm
BC = 25 cm
∠A = θ
Let's find the measure of angle A.
To find the measure of angle A, apply the trigonometric ratio for tan.
We have:
![\tan \theta=\frac{opposite}{\text{adjacent}}](https://img.qammunity.org/2023/formulas/mathematics/college/m8ljbmjnjqyj9sgae8aofrrc26nzawhdkz.png)
Where:
Opposite side is the side opposite the given angle(θ) = BC = 25 cm
Adjacent side is the side adjacent to the given angle (θ) = AB = 21 cm
Thus, we have:
![\text{tan}\theta=(25)/(21)](https://img.qammunity.org/2023/formulas/mathematics/college/3tkmlw8kbojeybcas9v87rqs4ct70qd9xy.png)
Solving further:
Take the inverse tangent of both sides
![\begin{gathered} \theta=\tan ^(-1)((25)/(21)) \\ \\ \theta=\tan ^(-1)(1.19) \\ \\ \theta=49.9\degree\approx50\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6qta0rhx601a739m5liqtnv44q32a0rl5o.png)
Therefore, the measure of ∠A to the nearest degree is 50°
ANSWER:
50°