Answer:
6
Step-by-step explanation:
First, ensure the numbers are ordered in ascending order:
![4,15,17,18,20,21,23,25](https://img.qammunity.org/2023/formulas/mathematics/college/6kgureg6edhjt3msnalmwv5ayp7jjws5lx.png)
Since we have an even number of items, divide the items into two equal parts:
![(4,15,17,18,)(20,21,23,25)](https://img.qammunity.org/2023/formulas/mathematics/college/5ewfi1vdxq02vt1k0b21jmjuqxxcizu35a.png)
For the lower quartile, find the median of the lower half:
![Q_1=(15+17)/(2)=(32)/(2)=16](https://img.qammunity.org/2023/formulas/mathematics/college/fe4v5om4n3s5nixyji1oauvh0fgycmai1y.png)
For the upper quartile, find the median of the upper half:
![Q_3=(21+23)/(2)=(44)/(2)=22](https://img.qammunity.org/2023/formulas/mathematics/college/gbu08b423gw9aragz5j3vvna9owss1d8rn.png)
Finally, find the interquartile range:
![\begin{gathered} \text{IQR}=Q_3-Q_1 \\ =22-16 \\ =6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l91hausrfme1ddugjvpav1yxlhxtck82qt.png)
The interquartile range for the data set is 6.