Given:
There are given two triangles, ABC and DEF.
Where,
![\begin{gathered} AC=6cm \\ BC=4cm \\ DE=15cm \\ DF=18cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pwt68hlx4q1mki6f597foou7apihkcazay.png)
Step-by-step explanation:
To find the value of two congruent triangles, we need to use the ratio properties:
So,
From the given congruent triangle:
![(AB)/(DE)=(AC)/(DF)](https://img.qammunity.org/2023/formulas/mathematics/college/8drf4tocsftdjwpao2202ehrxi9mz4pczr.png)
Then,
Put the all values into the above ratio expression:
So,
![\begin{gathered} \begin{equation*} (AB)/(DE)=(AC)/(DF) \end{equation*} \\ (AB)/(15)=(6)/(18) \\ (AB)/(15)=(1)/(3) \\ 3AB=15 \\ AB=(15)/(3) \\ AB=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f68pwm84o277jnyb4eer2z06n7rrau35d8.png)
Final answer:
Hence, the correct option is D.