ANSWER
![[6,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/y4vh9iqhyi2yxfq22iih6zdrqgqti8wo2h.png)
Step-by-step explanation
We want to identify the domain of the function:
![f(x)=(6x-36)^{(1)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/syv1i3yw04skjcl6x66qebu2sp7kxguh76.png)
Let us write the function:
![f(x)=√(6x-36)](https://img.qammunity.org/2023/formulas/mathematics/college/jz44d84mrt3pkurwig0xumpfj10x2iw6w3.png)
The domain of a function is the set of all x values for which the function is valid.
The given function contains a radical (square root). A radical is invalid if the radicand (the expression inside the radical) is less than 0.
This implies that the radicand must be greater than or equal to 0:
![6x-36\ge0](https://img.qammunity.org/2023/formulas/mathematics/college/hn2zfvavk8qf97tcpazvhs7esqamuu2z03.png)
Now, solve for x:
![\begin{gathered} 6x\ge36 \\ \\ x\ge(36)/(6) \\ \\ x\ge6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h7n4niuzyqlix44ayjkmw9rffb623vye1s.png)
Hence, the domain of the function is:
![x\ge6](https://img.qammunity.org/2023/formulas/mathematics/college/uz299gqflok193belyyo9t1cf8fzia0sh1.png)
In interval notation, the domain is:
![[6,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/y4vh9iqhyi2yxfq22iih6zdrqgqti8wo2h.png)