Given the points, we graph it as follows:
A. We determine the lengths of each side using the following expression:
![d=\sqrt[]{(X)^2+(Y)^2_{}}](https://img.qammunity.org/2023/formulas/mathematics/college/fiw0rwtgofwl9a7rqpnseepirdmdke1qix.png)
Here X & Y are the x & y-components from the directional vectors made from the points given.
Now, using the points we find the following directional directional vectors:
![RA=(3-7,-6+1)\Rightarrow RA=(-4,-5)](https://img.qammunity.org/2023/formulas/mathematics/college/b5qi2vyy4cnj9oza57v2lgoq2sg7ewocdr.png)
![AB=(-3-3,-6+6)\Rightarrow AB=(-6,0)](https://img.qammunity.org/2023/formulas/mathematics/college/rxxf1dxmn4vb4irawpmya58j6y9bfiitxx.png)
![BE=(-3+5,-6-4)\Rightarrow BE=(2,-10)](https://img.qammunity.org/2023/formulas/mathematics/college/f8xafs3m0u5tj4gpjbxlf76q08r2n9nzo0.png)
![RE=(-5-7,4+1)\Rightarrow RE=(-12,5)](https://img.qammunity.org/2023/formulas/mathematics/college/sqj1my92mgsxx4ct2mu1tlzbdd66n71lw4.png)
Now, we will determine the lengths of each side:
![d_(RA)=\sqrt[]{(-4)^2+(-5)^2}\Rightarrow d_(RA)=\sqrt[]{41}](https://img.qammunity.org/2023/formulas/mathematics/college/79tyd6sndbwk9t43l3atjwfys229ych895.png)
![d_(AB)=\sqrt[]{(-6)^2+(0)^2}\Rightarrow d_(AB)=6](https://img.qammunity.org/2023/formulas/mathematics/college/zs1ybgk5fdkmo7s7mtvro2vk7k0lv8h6bm.png)
![d_(BE)=\sqrt[]{2^2+(-10)^2}\Rightarrow d_(BE)=2\sqrt[]{26}](https://img.qammunity.org/2023/formulas/mathematics/college/2qkv5ergzmfjfyl5h8jt5ps5vgkqpjsu9b.png)
![d_(RE)=\sqrt[]{(-12)^2+5^2}\Rightarrow d_(RE)=13](https://img.qammunity.org/2023/formulas/mathematics/college/es9ilg0749krxfq1waoqymy33qna0yyzcw.png)
So, the lengths of each side are:
Side RA = 6.40 units.
Side AB = 6 units.
Side BE = 10.20 units.
Side RE = 13 units.
B. The approximate perimeter is:
6.40 + 6 + 10.20 + 13 = 55.4
So, its perimeter is approximately 55.4 units.