The question
![\sqrt[]{3}+i](https://img.qammunity.org/2023/formulas/mathematics/college/hqnfre6o1n9ajylv57j9qozgokmof2aeca.png)
is written in the standard rectangular form:
![a+bi](https://img.qammunity.org/2023/formulas/mathematics/college/rdvknnahzfhskzzx1h6ufndq0f5mkx9gg6.png)
To write in polar form, we must write it in the format
![\begin{gathered} r(\cos \theta+i\sin \theta) \\ or \\ rcis\theta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qs5z6lcskq3e8ucu8k564l15sv644tloqa.png)
To find r, we can use the formula
![\begin{gathered} r=\sqrt[]{a^2+b^2} \\ \text{where} \\ a=\sqrt[]{3} \\ b=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p190wceuq54cvajoq3i2scvulyja03rsy0.png)
Solving, we have
![\begin{gathered} r=\sqrt[]{(\sqrt[]{3})^2+1^2} \\ r=\sqrt[]{3+1}=\sqrt[]{4} \\ r=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cqhqyq577n04cri0jafyqurj7g3hxi0lcg.png)
To find θ, we use
![\theta=\tan ^(-1)(b)/(a)](https://img.qammunity.org/2023/formulas/mathematics/college/j3kzxgnomp07uwjbjr0bhqkm4xjcz3exu3.png)
Substituting the values, we have
![\begin{gathered} \theta=\tan ^(-1)\frac{1}{\sqrt[]{3}} \\ \theta=30^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r2q2fiypmxe1fpereamg3hmtzsl2nzf34h.png)
In polar form,
![\theta=(\pi)/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ypxap0qj8rwg8739ec1hpevd9jomddlgpi.png)
Note that since a and b are positive, the angle is in the first quadrant. Hence, we use the angle as is.
Therefore, we have the answer to be
![2\text{cis}(\pi)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/lngmvz0ye9qe3pkrfdugpdspwjhojitfb9.png)
OPTION A is correct.