ANSWER
![(0.5,-4.75)](https://img.qammunity.org/2023/formulas/mathematics/college/3om0d7tmcgvg9ta2axxeoxk9ljopnzb17p.png)
Step-by-step explanation
We want to find the coordinates of the vertex of the equation:
![f(x)=-x^2+x-5](https://img.qammunity.org/2023/formulas/mathematics/college/j2titejbx2bslnmwvznctrz62o6min9b6c.png)
The general form of a parabolic equation is:
![f(x)=ax^2+bx+c_{}](https://img.qammunity.org/2023/formulas/mathematics/college/bwbvoujqyuntlr6x0n1odktqhtmogtukl5.png)
The x-coordinate of the vertex of a parabola can be found by using the formula:
![h=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/cwwf9bbin9d0ejklymkv2ou3q3tng71xg4.png)
From the given equation:
![\begin{gathered} a=-1 \\ b=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9bcvvcdq51z1f9ozshp0eht2k91ogyycw4.png)
This implies that the x-coordinate of the vertex of the parabola is:
![\begin{gathered} h=-(1)/(2(-1))=-(1)/(-2) \\ h=(1)/(2)=0.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8kzsv9ek6zps0kq03va92scc6qql8rw43s.png)
To find the y-coordinate, substitute the value of h for x in the equation.
That is:
![\begin{gathered} f(h)=f((1)/(2))=-((1)/(2))^2+((1)/(2))-5 \\ f((1)/(2))=-(1)/(4)+(1)/(2)-5 \\ f((1)/(2))=-4.75 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cbowmdvwzry1hhesm3hs3qs336ype9cnav.png)
Therefore, the vertex of the parabola is:
![(0.5,-4.75)](https://img.qammunity.org/2023/formulas/mathematics/college/3om0d7tmcgvg9ta2axxeoxk9ljopnzb17p.png)