When a line bisect an angle this means that it divide the total angle in two equal angles.
Then we can conclude than
![m\angle SRP=m\angle QRP](https://img.qammunity.org/2023/formulas/mathematics/college/sr3voutxs3fkzg2hkksmkd6vfhuxrs2rz7.png)
But we know that
![\begin{gathered} m\angle SRP=5x-10 \\ m\angle QRP=3x+20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x4xtkociaxmj7oh0c2up771ig4qz1o889p.png)
Then, plugging this in the first equation
![\begin{gathered} 5x-10=3x+20 \\ 5x-3x=20+10 \\ 2x=30 \\ x=(30)/(2) \\ x=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hp4qfrkunaorpjmpq5g6vulf22xaoc0wwd.png)
Once we have the value of x we can determine the value of the angles SRP and QRP
![\begin{gathered} m\angle SRP=5x-10=5(15)-10=75-10=65 \\ m\angle QRP=3x+20=3(15)+20=45+20=65 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nol9gr8id2mr3bb9nsij9k20q2g0498kya.png)
Finally, to find the angle SRQ, we only add both angles. Then
![m\angle SRQ=65+65=130](https://img.qammunity.org/2023/formulas/mathematics/college/t3d4fdzlebvz7hy8t9q977g6fphx3y4oez.png)
So the angle SRQ is 130 degrees.