12.4k views
2 votes
Referring to the figure, match the translation of quadrilateral ABCD to quadrilateral A'B'C'D' by using the vector (0,1) a. A'(6,1), B'(2,1), C'(1,-2), D'(-3,-2) b. A'(-5,-1), B'(-1,-1), C'(-2,-4), D'(-6,-4) c. A'(-4,3), B'(0,3), C'(-1,0), D'(-5,0) d. A'(-4,0), B'(1,0), C'(0,-3), D'(-4,-3)

Referring to the figure, match the translation of quadrilateral ABCD to quadrilateral-example-1
User Chaosfire
by
3.3k points

1 Answer

5 votes

To translate the quadrilateral using the given vector, we will add the vector coordinates to the coordinates of the vertices of the shape.

The vertices of ABCD have the following coordinates:


\begin{gathered} A\to(-4,2) \\ B\to(0,2) \\ C\to(-1,-1) \\ D\to(-5,-1) \end{gathered}

If we add the vector (0, 1) to the vertices, we have:


\begin{gathered} A^(\prime)\to(-4,2+1)=(-4,3) \\ B^(\prime)\to(0,2+1)=(0,3) \\ C^(\prime)\to(-1,-1+1)=(-1,0) \\ D^(\prime)\to(-5,-1+1)=(-5,0) \end{gathered}

Therefore, the correct option is OPTION C.

User Maslak
by
3.2k points