It is given that the general equation is:
![A=mp+b](https://img.qammunity.org/2023/formulas/mathematics/college/u83a9jrpjxx82u3729gf7k2unxqffalqc6.png)
Here A is the number of people attending and p is the price of ticket.
Find the values of m and b by the conditions.
When A=1850, p=17 so it follows:
![1850=17m+b\ldots(i)](https://img.qammunity.org/2023/formulas/mathematics/college/oew0ngczy1594dzdiii63wnt700vrlo5jw.png)
When A=2700, p=13 so it follows:
![2700=13m+b\ldots(ii)](https://img.qammunity.org/2023/formulas/mathematics/college/d4pa8ijwsltp9l8qzgiloixpyacl9vr5ft.png)
Subtract (ii) from (i) to get:
![\begin{gathered} 1850-2700=17m-13m \\ m=(1850-2700)/(4)=(-425)/(2)=-212.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sgzzb8a3j1t3vin1vknjlyr6i1mcg8o1q8.png)
Substitute the value of m in (i) to get:
![\begin{gathered} 1850=17(-(425)/(2))+b \\ b=(10925)/(2)=5462.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/td31wxue5v8pnttmk40g3vf8sqd78ilg2o.png)
So the equation becomes:
![\begin{gathered} A=(-425)/(2)p+(10925)/(2) \\ 2A=-425p+10925 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lroc348rg1i3d8lf17ao6reou1kfuo6wra.png)
Hence the linear equation is 2A=-425p+10925.