Since the given triangle is an isosceles triangle, we get:

Now, we know that the interior angles of a triangle add up to 180 degrees, meaning:

Substituting the first equation in the above equation, and solving for B we get:

Substituting B=45° in the first equation we get:

Finally, to find x we use the Pythagorean theorem:

Solving the above equation we get:
![\begin{gathered} x^2=2\cdot11^2, \\ x=\sqrt[]{2\cdot11^2}, \\ x=11\sqrt[]{2}. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bl0vdfqzji1j3uj1xxwbuzx97p9efvle2d.png)
Answer:
![\begin{gathered} A=45^(\circ), \\ B=45^(\circ), \\ x=11\sqrt[]{2}. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ggg7cp2k16zbnlf193gn6yjxqgvvt7c9y7.png)