To make things easier, we first write both quantities with scientific notation:
![\begin{gathered} \text{Speed of light:} \\ 300,000,000\text{ m/s }\rightarrow3\cdot10^8\text{ m/s} \\ 148490000000\text{ m }\rightarrow14849\cdot10^7\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6nu6wjtj57ip9ajsxb90fdzyus07jmxq2n.png)
Now we can find how many seconds will it take the light to reach the sun with a simple division:
![(14849\cdot10^7)/(3\cdot10^8)=4.9496\cdot10^2\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/uslbw0svpzmy4xvwxyxn9b782rny3bo6t0.png)
Therefore, it will take the light 4.9496x10^2 seconds to reach the sun.
Finally, to convert it to hours and days, we just have to divide by the corresponding equivalence:
![\begin{gathered} 1\text{ hour}\rightarrow3600\text{ seconds} \\ \Rightarrow(494.96)/(3600)=0.13748=13\cdot10^(-2) \\ 1\text{ day }\rightarrow86400\text{ seconds} \\ \Rightarrow(494.96)/(86400)=0.005728=57.28\cdot10^(-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lhvztlrvnvlu3uhi1bzxvfyibwd7u5gpi9.png)
Therefore, it will take the light 13.748x10^(-2) hours or 57.28x10^(-4) days to reach the sun.