74.0k views
2 votes
Emmanuel invests $3600 and Kelsey invests $2400. Both investments eam 3.8%annual interest. How much longer will it take Kelsey's investment to reach $10,000than Emmanuel's investment?

User Heena
by
5.3k points

1 Answer

4 votes

Step-by-step explanation

We can build the following equations in order to represent the Emmanuel earnings:


y_1=3600(1+0.038)^x
y_2=10000

Matching both expressions:


10000=3,600(1+0.038)^x
\mathrm{Switch\: sides}
3600\mleft(1+0.038\mright)^x=10000
\mathrm{Divide\: both\: sides\: by\: }3600
(3600\left(1+0.038\right)^x)/(3600)=(10000)/(3600)
\mathrm{Simplify}
\mleft(1+0.038\mright)^x=(25)/(9)
\mathrm{If\: }f\mleft(x\mright)=g\mleft(x\mright)\mathrm{,\: then\: }\ln \mleft(f\mleft(x\mright)\mright)=\ln \mleft(g\mleft(x\mright)\mright)
\ln \mleft(\mleft(1+0.038\mright)^x\mright)=\ln \mleft((25)/(9)\mright)
\ln \mleft(\mleft(1+0.038\mright)^x\mright)=x\ln \mleft(1+0.038\mright)
x\ln \mleft(1+0.038\mright)=\ln \mleft((25)/(9)\mright)
\mathrm{Divide\: both\: sides\: by\: }\ln \mleft(1.038\mright)
(x\ln\left(1+0.038\right))/(\ln\left(1.038\right))=(\ln\left((25)/(9)\right))/(\ln\left(1.038\right))

Simplify:


x=(\ln\left((25)/(9)\right))/(\ln\left(1.038\right))

In decimal form, this is equivalent to 27.39 years.

Now, applying the same reasoning to the Kelsey investment:


y_1=2400(1+0.038)^x
y_2=10000

Matching both expressions:


10000=2400(1+0.038)^x
Switch\: sides
2400\mleft(1+0.038\mright)^x=10000
\mathrm{Divide\: both\: sides\: by\: }2400
(2400\left(1+0.038\right)^x)/(2400)=(10000)/(2400)
\mathrm{Simplify}
\mleft(1+0.038\mright)^x=(25)/(6)

Applying the exponent rule:


\mathrm{If\: }f\mleft(x\mright)=g\mleft(x\mright)\mathrm{,\: then\: }\ln \mleft(f\mleft(x\mright)\mright)=\ln \mleft(g\mleft(x\mright)\mright)
\ln \mleft(\mleft(1+0.038\mright)^x\mright)=\ln \mleft((25)/(6)\mright)

Apply log rule:


\ln \mleft(\mleft(1+0.038\mright)^x\mright)=x\ln \mleft(1+0.038\mright)
x\ln \mleft(1+0.038\mright)=\ln \mleft((25)/(6)\mright)
\mathrm{Divide\: both\: sides\: by\: }\ln \mleft(1.038\mright)
(x\ln\left(1+0.038\right))/(\ln\left(1.038\right))=(\ln\left((25)/(6)\right))/(\ln\left(1.038\right))

Simplify:


x=(\ln\left((25)/(6)\right))/(\ln\left(1.038\right))

Expressing in decimal form:


x=38.26

This is equivalent to 38.26 years to reach 10000 to the Kesley investment.

Comparing both investments:

Kesley Investment - Emmanuel Investment =

= 38.26 - 27.39 = 10.87

In conclusion, It will take 10.87 more years for Kelsey to reach $10,000

User MacTeo
by
4.3k points