Step 1
Given the function f defined in the question
Required: To find a relationship between a and b so that f is continuous at x=2
Step 2
![\lim _(x\rightarrow2^-)f(x)\text{ = }a(2)^2+b(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6bedeb85cgav4q5a99olqjmtc4i2hy4oos.png)
![\lim _(x\rightarrow2^-)f(x)=4a+2b](https://img.qammunity.org/2023/formulas/mathematics/high-school/31r3760roa6obhlpff0h5eo4lr0xgrdp47.png)
![\lim _{x\rightarrow2^{+^{}}}f(x)=5(2)-10=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/gjf0vd96az3alp4wnhynhwqgjzklghbqzn.png)
Step 3
For f to be continuous
![\lim _(x\rightarrow2^-)f(x)=\lim _(x\rightarrow2^+)f(x)_{}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jqagt150lzp1r22sctwuqidu1a8xmfnitb.png)
Hence,
![\begin{gathered} 4a+2b=0 \\ \text{Subtract 2b from both sides} \\ 4a+2b-2b=0-2b \\ \text{simplify} \\ 4a=-2b \\ or \\ -2b=4a \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a5oqpt0ykxjogs6pp9un7vhxy9tpob9c8b.png)
![\begin{gathered} \text{Divide through by -2} \\ (-2b)/(-2)=(4a)/(-2) \\ b=-2a \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lcampjr3ifq1zkb9svm5zl7zos2fgkwxs0.png)
Hence, the relationship between a and b so that f(x) is continuous at x= 2 is seen below as;
b=-2a