Given the function:
![h(x)=-3x^3-2x^2-8x-2](https://img.qammunity.org/2023/formulas/mathematics/college/tlu37yph9pcbjjkxxioug8o23710hqh1dt.png)
Let's use the rational zeros theorem to list all possible rational zeros of the given polynomial.
To use the rational roots theorem we have:
![\pm(p)/(q)](https://img.qammunity.org/2023/formulas/mathematics/college/49wfgqu4f9ha27q4sqqd8w71u1wt614s0t.png)
Where p is a factor of the constaant (last term).
q is a factor of the leading coefficient,
Thus, we have:
p: Factors of -2 = ±1, ±2
q: Factors of -3 = ±1, ±3
The rational zero will be every combination of ±p/q.
Thus, we have:
![\begin{gathered} \pm(p)/(q)=\pm(1)/(1),\pm(1)/(3),\pm(2)/(1),\pm(2)/(3) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tcawl8877203otru7a7mi75sh77ko6aqmu.png)
Simplify:
![\pm(p)/(q)=\pm1,\pm(1)/(3),\pm2,\pm(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/71jd732v8qf6e1wh6cqndeuqr7lsxvc17i.png)
Therefore, the list of all possible rational zeros are:
![\pm1,\pm(1)/(3),\pm2,\pm(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/lkut5geh967s5fgk48igk2kizao5huv1u7.png)
ANSWER:
![\pm1,\pm(1)/(3),\pm2,\pm(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/lkut5geh967s5fgk48igk2kizao5huv1u7.png)